
1

2019
Revision 2.0

In collaboration with Cypress Semiconductor

Platform Security Architecture
Application Guide:
How to secure a smart door lock using
PSA principles and Arm security technologies

2

Abstract
With the explosive growth in the Internet of Things (IoT), and the number of devices
soaring, security has become a huge challenge globally. Designing consistent security
across connected devices can be a minefield to navigate and implementation can be
costly. The Platform Security Architecture aims to address this challenge. It is a common
framework that enables the IoT ecosystem to move forward with stronger, scalable security
and greater confidence. PSA reduces the cost and risk associated with deploying robust
security solutions, whilst also speeding up the time-to-market. To learn more about PSA
and the benefits, you can check out this whitepaper.

This application guide describes how to design security for a smart door lock device using
PSA guidelines and principles. It examines how to develop a threat model for a smart door
lock and shows how security counter-measures are derived effectively for this application.
It considers the hardware architectures and security IP necessary to maintain asset security;
from trusted boot to secure hardware partitioning. Additionally, using the PSA Firmware
Framework, smart door lock functionalities are isolated and partitioned into Secure and
Non-secure processing environments.

Finally, this guide shows how open source Trusted Firmware-M APIs are
used as a mechanism to isolate smart door lock security critical functionalities from
Non-secure code.

In this whitepaper, we will look at two implementations of TF-M; firstly with the Armv8-M
architecture, and secondly with a dual Armv7-M architecture with additional security
features for hardware-based isolation.

By applying PSA principles and guidelines; analyze, architect, implement and certify, this
application guide walks through some of the main steps necessary to achieve a holistic
robust security solution for a smart door lock device. This guide demonstrates that
applications like a smart door lock can adopt PSA principles easily and reap the benefits of
consistent, predictable security.

The application guide is for system architecture developers and security personnel, either
from chip vendors, RTOS vendors, or OEMs. It assumes that the reader is familiar with
basic security concepts in networking, operating systems, and data protection, as well as
standard techniques in cryptography, such as authentication, hashing, encryption, and
digital certificates. A basic knowledge of the PSA specifications will also make it easier to
follow this application guide.

© Arm Ltd. 2019

http://developer.arm.com/products/architecture/security-architectures/platform-security-architecture
https://pages.arm.com/PSA-Building-a-secure-IoT.html
https://git.trustedfirmware.org/trusted-firmware-m.git/about/
https://developer.arm.com/architectures/security-architectures/platform-security-architecture

3

Glossary
Term Meaning

© Arm Ltd. 2019

AEAD

API

ARoT

eMMC

FF

GP

IETF

IoT

IPC

IRQ

MAC

MPU

MPU

NB-IoT

NFC

NSPE

NVM

OEM

OS

OTP

PIN

PKCS

PSA-RoT

PSA

ROM

ROTPK

RPMB

RSA

RTOS

SCA

SoC

SPE

SPM

TBFU

Authenticated Encryption with Associated Data

Application Program Interface

Application Root of Trust

Embedded Multimedia Card

(Low-cost flash memory with a built-in controller)

Firmware Framework

GlobalPlatform

The Internet Engineering Task Force

Internet of Things

Inter-process Communications

Interrupt Request

Message Authentication Code

Memory Protection Unit

Micro Processor Units

Narrow Band Internet of Things

Near Field Communication

Non-secure Processing Environment

Non-volatile memory

Original Equipment Manufacturer

Operating System

One Time Programmable

(A characteristic of some types of NVM)

Personal Identification Number

The Public-Key Cryptography Standards

PSA Root of Trust

Platform Security Architecture

Read-only Memory

Root of Trust Public Key

(for firmware verification)

Replay-protected Memory Block

Rivest, Shamir and Adleman

(An algorithm for public-key cryptography)

Real Time OS

Side-channel Attack

System on Chip

Secure Processing Environment

(Contains the PSA-RoT and the ARoT)

Secure Partition Manager

Trusted Boot Firmware Update

4

Glossary
Term Meaning

© Arm Ltd. 2019

TBSA-M

TBSA-M ACK

TF-M

TMSA

TOE

TRNG

TSF

T.xxxx

UI

YAML

Trusted Base System Architecture for Armv6-M,

Armv7-M and Armv8-M

Trusted Base System Architecture for M Profile

Architecture Compliance Kit

Trusted Firmware for M-class processors

Threat Model and Security Analysis

Target of Evaluation

True Random Number Generator

TOE Security Functionality

Threat.xxxx

(The threat classification representative. T. = Threat)

User Interface

Yet Another Markup Language

5

Contents
Page Topics

© Arm Ltd. 2019

6.

8.

15.

35.

41.

46.

47.

49.

50.

PSA Introduction
Analyze - PSA TMSA	

Architect - PSA Specifications	

Implement - PSA TF-M on Armv8-M	
Implement - PSA on Armv7-M
PSA certification	
Conclusion	

References
Appendix - Threats Summary Table

 

6

1. PSA Introduction
Arm technologies are found in billions of Internet of Things (IoT) devices. The success of IoT
is heavily dependent upon the trust and security built into billions of different connected
devices. As security attacks and threats continue to evolve, and the attack surface grows,
so must the counter-measures to combat them.

However, security events that have happened in past years have revealed that many IoT
products are not designed with adequate protection against malicious attacks. As a result,
the industry still faces many challenges:

 • Security can be expensive to implement throughout a device’s lifecycle.
 • IoT device security is difficult to manage at scale.
 • ��Security specialists are expensive and in short supply, particularly for smaller

businesses and start-ups.
 • �The security landscape is ever-evolving, with new attack vulnerabilities

continuously emerging.
 • �A lack of confidence in the data being passed to, and from, sensors and actuators.

These challenges mean that the industry is currently unable to fully realize the economic
benefits of IoT. With these trends and security issues in mind, Arm announced the Platform
Security Architecture (PSA) in 2017. The PSA is a robust system architecture covering both
hardware and firmware, codifying these common security principles into a set of system
requirements and interfaces. It is aimed at different entities throughout the supply chain,
from chip designers and device developers to cloud providers and network infrastructure
providers and software vendors. As open-source solutions to the PSA, we have Trusted
Firmware-M (TF-M) which launched in early 2018 and Arm Mbed OS to address security
in device hardware, software, and communication throughout the device lifecycle. TF-M
supports Armv8-M or dual Armv7-M-based Cortex-M processors with flexible and
configurable design which allows adaptation to fit different customer needs. In addition,
the cloud-based Arm Pelion IoT Platform offers a flexible, secure, and efficient foundation
spanning connectivity, device, and data management which enables protection during the
entire lifetime of the IoT infrastructure and intelligent devices.

PSA draws and builds upon best practice from across the industry, which enables Arm
partners and the wider ecosystem to consistently design-in the right level of security for all
connected devices.

© Arm Ltd. 2019

Figure 1: Platform
Security Architecture

Threat Model and
Security Analysis

Implementation

OS

Cloud service
clients

Hardware
platform

Firmware

Security
Model

Derived Requirements

Trusted
Base System
Architecture

Secure
Production

Trusted Boot
and Firmware

Update

Application
Security
Services

 Firmware
Framework

Specify

A
ssess

Inform

Platform Security Architecture

https://www.arm.com/products/iot/pelion-iot-platform

7

As illustrated in Figure 1, PSA provides a recipe for building secure systems and it is defined
in four stages:

 • �Stage one: Analyze (a process where you analyze your product, assets and security

risks, in a process called Threat Models and Security Analyses - TMSA).

 • Stage two: Architect (Firmware and hardware architecture specifications).

 • Stage three: Implement (hardware IP and open-source reference code).

 • Stage four: Certify (multi-level assurance scheme, PSA Certified™).

This application guide demonstrates how these four phases of the PSA can be applied to
secure an IoT device.

It outlines the design and implementation of a smart door lock device, by leveraging PSA,
security IP and TF-M. The smart door lock is a popular topic in the IoT sphere as it relies
on a solid security implementation and maintenance, since a security breach might lead to
severe damage, such as a loss of goods or physical danger.

A basic set of PSA guidelines are considered from the perspective of an IoT device
architecture or developer. It is not a comprehensive smart door lock solution covering all
the security considerations, it also does not cover physical mechanisms. As a result, the
intention is to reduce, rather than eliminate, the requirement for security analysis during
system design.

© Arm Ltd. 2019

8

2. Analyze - PSA TMSA

2.1 PSA TMSA overview

Security needs to be considered at the outset when designing a device or a system-on-chip
(SoC). With the inherent diversity of IoT there is a greater need for device manufacturers to
have a reference Threat Model and Security Analysis (TMSA) for their products. Arm has
created a series of TMSA examples for different IoT products to show how this might be
done, in a way that is understandable for those who are not experts in security.

The PSA TMSAs also contain useful appendices that show how Arm TrustZone and
Arm CryptoIsland technology can be used to meet some of the Security Functional
Requirements (SFRs) identified during the threat model and security analysis process. These
documents are useful as a starting point and a developer can derive a bespoke TMSA for a
particular target device [1].

The TMSA helps to understand security threats and requirements, and it addresses the
following aspects:

 • �The assets to protect in the device.
 • ��The likely threats.
 • The scope and severity of potential attacks.
 • The types of potential attacker and their methods.
 • The mitigations that are needed.

In this analyze stage, we propose a security model for a smart door lock and present an
outline of the TMSA, including the assets to protect, an adversary model, threats and the
corresponding security objectives.

2.2 Smart door lock - how much security is needed?

IoT devices have varying security requirements – a wireless sensor in a field that measures
sunlight and the water content of the soil will probably not be subject to the same level
of malware or hardware attacks as a smart door lock that runs a comprehensive app that
interacts with the external world.

Security is always a balance between the cost and effort that the system designer is
prepared to invest to protect assets, and the cost and effort an attacker is likely to spend
on an attack, as shown in Figure 2.

© Arm Ltd. 2019

https://developer.arm.com/architectures/security-architectures/platform-security-architecture

9© Arm Ltd. 2019

In this application guide, we assume that protection from software attack and lightweight
electrical attacks, such as probing and JTAG attacks, is a minimum requirement. If this level
of protection is chosen, then the design must not have shared private keys (a class key used
among groups, i.e. a device model) to minimize class break vulnerabilities via a side-channel
attack (SCA) or a perturbation attack.

The designer can choose to have more advanced threats in scope and to add additional
protection in silicon, for example counter-measures to SCAs and perturbation attacks.

Figure 2: Security
cost balance

Value to attacker

Cost/effort to secure

Communication attack
• Man-In-The-Middle
• Weak RNG
• Code vulnerabilities

Software attacks
• Buffer overflows
• Interrupts
• Malware

Lightweight hardware attacks
• Power, clock, bus lines glitches
• USB dongle
• Debug port

Advanced hardware
attacks that are out
of scope
• Focused Ion-beam
• Microscopy probing
• Time, money & equipment

Co
st

/e
ffo

rt
 to

 a
tt

ac
k

10

2.3 Smart door lock overview

A smart door lock is an electromechanical lock which performs locking and unlocking
operations on a door when it receives instructions from an authorized device using a
wireless protocol and a cryptographic key to execute the authorization process [2]. The
smart door lock also monitors access and sends alerts for the different monitored or critical
device events.

Many smart door locks offer a mobile application which allows the user to lock and unlock
doors remotely. Connectivity is the most important function that is supported by the many
available technologies.

The popular connectivity candidates include Bluetooth Low Energy, Wi-Fi, ZigBee,
2G/3G/4G cellular, NB-IoT and NFC, amongst others.

Although each connectivity option has unique capabilities and advantages, all smart door
locks share some common requirements, such as low-power and security. Long battery life
is a key requirement because most smart door locks are battery-powered and replacing or
recharging the batteries is inconvenient. Bluetooth Low Energy is a dominant technology
on the market today because its low energy requirements result in a battery life of up to
five years [3]. Wi-Fi adds native internet connectivity, but Wi-Fi significantly increases the
power consumption and shortens the battery life from around five years to one year.

In this application guide, we look at the most popular network architecture and features
of the smart door lock device in relation to PSA analysis, architecture and implementation.
Figure 3 shows a typical smart door lock system in a simple conceptual diagram:

© Arm Ltd. 2019

Smart Door Lock

• �Lock/Unlock by fingerprint,
PIN code, Bluetooth Low
Energy commands, Physical
key, access token, etc.

• �Guest access managed
by Owner

• Touch screen

• Battery-powered

Mobile App

• �Owners app paired with
smart door lock and
provisioned by the serve

• �Sync audit logs between
smart door lock and server

Cloud Server

• �Manage smart door lock pre-
shared keys

• �Trigger smart door lock
firmware upgrade

• �Lifetime managment of
Owner and guest keys
and certificate

Bluetooth
Low Energy Wireless

Figure 3: Smart
door lock system

https://en.wikipedia.org/wiki/Smart_lock
http://www.ti.com/lit/an/swra604/swra604.pdf

11

2.4 Smart door lock assets

The Target of Evaluation (TOE, also known as the use case) assets for a smart door lock are
categorized as:

 • Smart door lock device ID.
 • Firmware and its certificates.
 • Owner/guest credentials, including biometric data.
 • Audit logs.
 • Configuration and user data.
 • Network connectivity.
 • �Biometric sensor, Bluetooth Low Energy and other hardware resources that are out

of the TOE.

2.5 Adversary model

An attacker is a threat agent (a person or a process acting on behalf of an agent) that
tries to undermine the TOE security policy and the TOE Security Functionality (TSF). The
attacker tries to change the properties of the assets defined in section 2.4.

The following list details the threat adversary models that smart door locks might want to
protect against:

+ Remote attackers:

 • �Software attackers are the most prevalent type of attacker.
 • Network attackers, such as man-in-the-middle.

+ Local/physical attackers:

 • Local software attackers.
 • Network connectivity.
 • �Simple hardware attackers with limited resources, knowledge or equipment.

Examples include, a USB dongle, debug port, voltage/current measurement or
port scanner.

+ Smart door lock-specific attackers:

 • � �Relay attackers who try to set up a communication channel, such as via Bluetooth
Low Energy.

 • �Revoked attackers with temporary legitimate access permissions. The permissions
would be revoked.

 • �Thief attackers who steal the smart door lock owner’s authorized device, such as a
smartphone or Bluetooth Low Energy token [4].

+ Other attackers (beyond the scope of this application guide):

 • ��Insider attackers who may be from the OEM, ODM, silicon vendor or another third
party (developers, server operator).

 • �Advanced hardware attackers who are capable of mill down, focused ion-beam
lithography, microscopy probing, etc.

© Arm Ltd. 2019

https://people.eecs.berkeley.edu/~pratyushmishra/docs/papers/asiaccs16-smartlock.pdf

12

2.6 Security threats and attack patterns

The smart door lock’s network architecture, features, assets to protect, as well as potential
attackers have been identified. Taking all these aspects into account, the STRIDE threats
and corresponding attack scenarios listed below are addressed in this TMSA:

+ T.Spoofing (“T.” represents “Threat”)

 • �An attacker impersonates a legitimate admin, owner or guest of the smart door lock
and performs malicious actions.

 • �An attacker forces remote entities to recognize a rogue device under its control
as a valid smart door lock by modifying or cloning device ID, or replacing a remote
entities certificate, to gain illegal access to the configured system network.Local/
physical attackers:

+ T.Tampering

 • � �An attacker succeeds in loading and executing rogue code onto the smart
door lock.

 • ��An attacker abuses the firmware update mechanism to do version rollback and
exploit a version with a legacy bug.

 • �An attacker abuses the digital port, such as debug features or physical access to
modify local assets.

 • ���An attacker intercepts and modifies network communication data.
 • ����An attacker uses a simple side-channel analysis attack to interfere with the circuit

and to try to reset the smart door lock into a default state (which can
be “unlocked”).

+ T.Repudiation

 • � ��An attacker modifies event logs that are stored locally or in transit to suppress
critical alerts/events or to erase security events.

 • � �An attacker changes the system time to make events that are logged with the
wrong time stamp.

+ T.Information-Disclosure

 • � ��An attacker carries out reverse engineering by extracting firmware stored in local
memory or by intercepting the firmware OTA package.

 • � �An attacker extracts sensitive information, such as confidential data or user privacy
data. This extraction of sensitive data can be done by exploiting weak cryptography
to steal assets from local storage or network packages, or by eavesdropping buses
and other side-channel analysis methods.

+ T.Denial-of-Service

 • � ���An attacker injects rogue code or exploits a firmware flaw to make the smart door
lock permanently non-functional.

 • � ���An attacker tampers with the critical configuration to make the smart door lock
disconnect from the network.

+ T.Elevation-of-Privilege

 • � ���An attacker exploits the debug port to inject rogue code and take control of the
smart door lock in order to abuse other resources such as the biometric sensor,
cylinder or to drain the battery.

 • � ���An attacker exploits the control flow for device usurpation or to cause
abnormal behavior.

© Arm Ltd. 2019

13

2.7 Security objectives

As counter-measure mechanisms to the security threats identified in section 2.5, the major
security objectives are set to:

 • �Device Identification and Attestation – Uniquely identify the client device and
support attestation and data binding based on the unique ID.

 • �Software Isolation – Isolating the execution environment between the NSPE and
SPE, also between the PSA-RoT Services and other code of the SPE.T.

 • � �State-of-the-art cryptography algorithms and key sizes – Certificate-based
authentication and communication, plus cryptographic services including True
Random Number Generator (TRNG), symmetric encryption, and nonce
counter, etc.

 • ��Trusted Boot and Secure Firmware Update – Trusted boot and secure update,
including anti-rollback and security epoch feature.

 • �Secure Storage – For TOE assets, protection against data extraction, data rollback
(via security epoch version), data sharing or device clone.

 • ���Secure State – Maintain the runtime secure state which is measurable and
attestable, including protection from simple physical tamper and SCA.

 • �Access Control – Authenticate admin before granting access to the smart door lock
configuration and logs and before performing a firmware update.

 • �Audit Log – Maintain a log of all significant events and allow access and analysis of
these logs to authorized admin only.

 • �Secure Debug – Restrict access to debug features by a deactivation or access
control mechanism.

© Arm Ltd. 2019

Security
Objectives

T.
Spoofing

Device Identification
and Attestation

Secure State

Software Isolation

State-of-the-art
Cryptography

Access Control

Trustred Boot and
Secure Firmware
Update

Audit Log

Secure Debug

Secure Storage

Threats

T.
Information-
Disclosure

T.
Tampering

T.
Denial-of-
Service

T.
Repudiation

T.
Evaluation-
of-Privilege

Table 1: Security
objectives rationale

14

The mapping matrix in Table 1 shows the suitability of each of these security objectives to
manage the identified security threats. Please refer to the “Security Objectives Rationale”
section of PSA TMSA specifications [1] for examples and more details on the rationale of
the mapping matrix.

2.8 Security policy

Security policy, which is beyond the scope of this application guide, is also critical to the
overall smart door lock system security. Security policy controls the key management for
cryptographic keys, as well as their credentials and certificates. These cryptographic keys
are securely managed during the lifecycle of the smart door lock when it is used without
the smart door lock device.

2.9 TMSA threats summary table

Table 3 in the appendix details assets, threats, counter-measures, security requirements,
and the corresponding Arm security IP for the smart door lock. Both the PSA specifications
and threats summary table provide useful implementation guidance. In the following
sections, this application guide details the design and implementation of the smart door

© Arm Ltd. 2019

https://developer.arm.com/architectures/security-architectures/platform-security-architecture

15

3. Architect - PSA Specifications
3.1 PSA TBSA-M overview

The foundation of PSA separates the system into a Secure Processing Environment (SPE),
which is for the sensitive assets and the code that manages them, and a Non-secure
Processing Environment (NSPE), which is where the main application and communication
firmware executes. The SPE is isolated from the NSPE. PSA TBSA-compliant devices are
required to implement hardware to support the PSA isolation model.

The following hardware mechanisms can be used to implement the PSA isolation:

 • Memory Protection Unit (MPU) based isolation.
 • TrustZone-based isolation.
 • Dual Micro Processor Units (MPUs) or Multiple CPUs.
 • Trusted Subsystem (integrated/off-chip).
 • Other isolation solutions, such as Custom Logic.

One way to achieve software isolation, is with Arm TrustZone. This provides a solution
with optimum robustness, performance at low cost, with wider applicability. To address the
security of all embedded and IoT markets, especially those that require efficient security
or digital signal control, Arm Cortex-M23 and Cortex-M33 were introduced in 2016.
Cortex-M23 targets the most area-constrained and energy-constrained applications and
the Cortex-M33 targets the more capable systems. Armv8-M with the TrustZone security
extension allows multiple security domains to exist within a single processor system, and
this extension provides a significant security enhancement over what was possible with
earlier architectures.

The Cortex-M23, Cortex-M33 and Cortex-M35P processors achieve an optimal blend
between real-time determinism, energy efficiency, software productivity, and system
security. This blend makes many new applications and opportunities across diverse markets
possible.

In addition to the above, Armv7-M based dual-core architectures can also be used to
achieve the same security goals by implementing hardware mechanisms that meet PSA
isolation requirements.

To meet the higher security requirements for robustness or efficiency, an assisted
architecture can be adopted. An assisted architecture has one or more trusted subsystems.
A typical example of an assisted architecture is adding a dedicated hardware to accelerate
and offload some of the cryptographic operations from the SPE software and to provide
increased protection to high-value assets, such as Root of Trust (RoT) keys.

© Arm Ltd. 2019

16

Such assisted architectures can implement a hardware Key Store that allows use of the keys
by cryptographic accelerators at the same time as preventing the keys from being read by
the NSPE and SPE software. Assisted architectures can contain hardware for governing
lifecycle state transitions and enforcing lifecycle state policies. In addition, assisted
architectures can also provide hardware counter-measures for:

 • �Invasive attacks, such as probing.

 • �Side-channel attacks (SCAs), for example power and electromagnetic
emission analysis.

 • Perturbation attacks, for example, clock or voltage manipulation.��

 • Detected tamper events by a hardware-initiated response.

The Arm CryptoCell Family is a comprehensive security subsystem solution that can
be used to implement an assisted architecture. CryptoCell provides security services,
additional trust anchors, and security mechanisms to ensure that the execution state is
safe. These security mechanisms include:

 • Persistent storage of secrets.
 • �Rollback prevention.
 • Validation of loaded software.
 • Validation of software updates.
 • Cryptography.
 • True Random Number Generation (TRNG).

In the Arm CryptoCell family, CryptoCell-312 is specifically for low-power, low-
area designs.

The Arm CryptoIsland product family is a security enclave that enables on-die
robust platform security services. CryptoIsland-300 is based on the Armv6-M CPU
and CryptoCell-312. Such a security enclave is fully isolated from other execution
environments, which, given its ease of use, makes it suitable for stringent certifications.

Physical tampering and simple SCAs are also possible threats to a smart door lock device.
CryptoIsland-300P is an advanced novel solution that mitigates the threat of SCA at
the source of the problem, by drastically reducing the leakage of sensitive information
through power consumption and electromagnetic emanations. Cortex-M35P (Armv8-M
with TrustZone) further extends the anti-tampering features to add physical resilience and
system safety functions, such as lockstep, configurable parity, and observability, at the
same time as maintaining performance.

In addition to isolation, the PSA TBSA-M also defines a set of hardware requirements.
For example:

 • Infrastructure of access policy on transactions, interrupt, secure RAM.
 • Fuse function and confidentiality.
 • Cryptographic key usage and size.
 • Trusted Boot.
 • Trusted timers.
 • Version counter.
 • Entropy source.
 • Debug protection module.
 • External Interface Peripherals.

© Arm Ltd. 2019

https://developer.arm.com/ip-products/security-ip

17

*1: Hardware Isolation can be Arm TrustZone or Custom Logic (hardware isolation IP).
*2: � �Secure Subsystem / Secure Enclave can be TrustZone Filters + CryptoCell, CryptoIsland or

a separate secure core.

© Arm Ltd. 2019

Debug Always-on
Domain

Instruction
Cache

Cortex-M33

AHBS Interconnect

Fingerprint Scanner

Touchscreen, Keypad

Cylinder Lock
System SRAM

SRAM Control

GPIO PWM UART SPI

Hardware Isolation

Secure Subsystem
Secure Enclave

Hardware Isolation

Flash Controller (s)

Flash
(Internal / External)

Hardware Isolation

APB Bridge

CoreSight
SoC

Power
Control

Figure 4:
Example smart
door lock SoC

The example SoC in Figure 4 fulfils the TBSA-M requirements such as base system
isolation, cryptography trusted boot, and debug protection, etc.

Most security assets and settings that need to be stored on-chip require OTP non-volatile
storage, i.e. Fuse or a secure element or other trusted embedded NVM, in order to ensure
that values cannot be changed. The following table lists several typical fields and sizes:

18© Arm Ltd. 2019

Name

Hardware Unique
Root Key (HUK)

Root of
Trust Public
Key (ROTPK)

Version Counter

128 bits

RSA 3072 bits (key)

ECC 256 bits

128 bits (digest)

64 values

0 bits

0 bits

0 bits

RSA 3072 bits (key)

0 bits

Access by trusted code
or by trusted hardware
only

Three options
of ROTPK

ROTPK should be
accessible only
during boot

Digest option is
to save OTP size
and cost

For SPE
version control

On-chip data size Off-chip data size Notes

Table 2: Root keys &
Version counter

As shown in Table 2, TBSA-M mandates two embedded root keys for different
security purposes:

+ �HUK - Instance unique hardware key (Hardware Unique Key) that provides Root of Trust
for confidentiality or authenticity. HUK is the root seed for deriving other Root of Trust
secrets, i.e. a device binding key.

+ �ROTPK - The public key half of an asymmetric key pair. ROTPK is responsible for
securely authenticating the first stage of the mutable code and provides Root of Trust
for authenticity.

19

To reduce fuse cost, Key Derivation Functions (KDFs) can be used to generate several
symmetric keys or asymmetric key pairs for different purposes. However, KDFs can also
reduce the security impact when key disclosure happens. A key derivation operation
must use a cryptographic one-way function that preserves the entropy of the source
key. Common derivation constructions use a keyed Hash Message Authentication Code
(HMAC) or a Cipher-based Message Authentication Code (CMAC). Please refer to the
NIST’s recommendations [5] for more details on the HMAC and CMAC. The following
Figure 5 shows a possible KDF usage scenario. In the example, the KDF generates
asymmetric ECC key pairs, a temporary AES session key and a secure storage data binding
AES key.

The TBSA-M requires that the HUK is not exposed to the NSPE. Therefore, this device root
key must be moved to execute inside the SPE, or through the key management feature in
assisted architecture, i.e. CryptoCell or CryptoIsland. The TBSA-M also requires that power
management is controlled from the SPE.

This application guide does not aim to cover all these details of the TBSA-M requirements.
Audiences who are working on SoC design and who are aiming to be PSA-compliant should
read the PSA TBSA-M specification and look at the TBSA-M test kits which are designed
so that chip vendors can accelerate development cycles. Test Scenario and Test Validation
Methodology documents in the source tree (under /docs folder) give more details on
test cases and how to use them to check the hardware implementation against the PSA
TBSA-M specification.

© Arm Ltd. 2019

Security epoch

Attestation key
pair (ECC)

Device binding
key (AES)Session key (AES)

Key Derivation Algorithm

KDF

Salt Random
seed

SPE
Partition ID

KDF KDF

HUKBoot state Security
Lifecycle

Root Key Lifecycle State

Figure 5: Key
Derivation
Functions (KDFs)

https://csrc.nist.gov/publications/detail/sp/800-108/final
https://github.com/ARM-software/psa-arch-tests

20

3.2 PSA TBFU
3.2.1 PSA TBFU Overview and Keynotes

To ensure that only authenticated code runs on a device, trusted boot and chain of trust
must be established. The PSA Trusted Boot and Firmware Update (TBFU) specification
describes the technical requirements that are needed to ensure that, from the point of a
SoC reset, only the correct and intended firmware, operating system, and Root of Trust
Services, will be authenticated, loaded and executed. Trusted Boot refers specifically to
the concept of validating that an image is authorized before it is booted. Firmware Update
refers to the verification of the update before it is stored to the NVM. These two concepts
(Trusted Boot and Firmware Update) are complementary to each other.

A. Cryptographic algorithms

The PSA TBFU requires firmware validation to use public key cryptography, such as RSA
or ECC. Cryptographic algorithms can be implemented with hardware-dedicated engines
or in software. Both implementations can be protected against non-invasive side-channel
attacks (SCAs). Secure Hash Algorithm 2 (SHA-256 and SHA-384) should be used for all
cryptographic hashes. Any use of RSA must follow the PKCS#1 standard.

B. Storage

Root of Trust starts with trusted software stored in the internal, immutable memory inside
the SoC. Internal or external flash, that can be easily reprogrammed or erased, is considered
mistrusted storage. As a result, the device relies on authentication to protect it from
tampering. By providing data at rest protection, data in motion protection, and data that is
bound to the SoC identity - to prevent cloning and substitution attacks - we have mutable
storages that are trusted.

C. Chain of trust

The device must include at least one immutable firmware verification public key, known as
a Root of Trust Public Key (ROTPK). Any use of a MAC to authenticate a firmware image
manifest must be done in the SPE, use an on-chip key, and be in the form of an HMAC or
a CMAC signature. Secrets used by a trusted component must be scrubbed from volatile
memory before ownership of the memory is transferred to a less trusted component.

D. Image verification

Each loaded image must be verified before execution and the boot process must be
uninterruptible during signature verification to prevent race conditions. The update process
must be an atomic operation. Authentication data used to verify images must be in on-chip
memory before use.

© Arm Ltd. 2019

21

E. Firmware upgrade and manifest

Firmware upgrade consists of a manifest and an image. A manifest contains metadata
about the firmware image and the metadata is protected against modification. The manifest
should contain at least the following fields:

 • Format version.
 • Image signing key ID.
 • Image hash algorithm and value.
 • Image size and type.
 • Product class.
 • Software version.
 • Security epoch.
 • Manifest signature.
 • The Internet Engineering Task Force (IETF).
 • SUIT manifest format (recommended for a constrained device).
 • X.509v3 content certificate format (recommended for a capable device).

Firmware images are authenticated to check the provenance and integrity, and to check the
authorizing update against a device security policy. The security policy might include:

 • The public keys required to verify the image.
 • Whether the update is targeted for that specific device, based on the device identity.
 • Whether the device has enough power to perform all the required steps.

Image updates that include security enhancements or vulnerability fixes must increase the
counter value when signing the manifest. Extremely severe security vulnerabilities which
require permanent revocation of older images increase the security epoch value.

F. Anti-rollback

Firmware must use non-volatile (NV) version counters to protect against rollback. On-chip
secure storage, One Time Programmable (OTP), secure elements or eMMC RPMB are
possible solutions. This monotonic rollback counter is in one-way growing, never overflows,
and has at least the 64 values that are required for the SPE. Only images of a higher version
or the same version can be installed, and the rollback counter is increased to match the
successfully installed higher version.

© Arm Ltd. 2019

22

G. Key management and signing

The security of the trusted boot process is primarily dependent on the secrecy of the
private portion of the ROTPK. If the firmware image signer loses control of the private
signing key, it must be revoked if the private key of the ROTPK is not compromised.
This revocation is achieved by signing a new key certificate with an incremented key
version value.

Furthermore, the PSA TBFU specification provides guidance information on security
features such as measured boot and attestation, security epoch, and best practices for
image swapping in a firmware upgrade, etc.

3.2.2 Smart Door Lock - Trusted Boot Design Consideration

If possible, split the bootloader into two stages –immutable and mutable. The first code
of the trusted boot process is an immutable bootloader placed in a boot ROM or a locked
eFlash sector.

The immutable bootloader must only contain the flash and cryptographic primitives that
are necessary to read and validate the next stage. Additional functionality should be an
upgradable part of the SPE software, either in a secondary bootloader or a Secure Partition
Manager (SPM). In practical terms, a mutable secondary bootloader can be part of the SPE
to simplify the booting chain.

The immutable bootloader must enable any available watchdog timers as soon as possible
before the next stage to reduce the risk of tampered memory from a physical attack. It
is also recommended that the physical security and storage of keys, controlled access
to those keys, and auditing of access must be assessed. This assessment is particularly
relevant for the creation of certificates for use in production and development of devices.
In addition, appropriate processes for the handling and management of signing keys should
also be assessed. Figure 6 illustrates a multiple stage trusted boot:

© Arm Ltd. 2019

23© Arm Ltd. 2019

Figure 6:
The two phases of
trusted boot

24

The Mutable Boot Loader (MBL), SPE code, and NSPE code are authenticated in a similar
way. The following diagram further shows signatures and certificates of MBL, SPE and
NSPE with some high-level data structure that is defined in the TBFU specification.

© Arm Ltd. 2019

Figure 7: Signature
authentication chain

Security Epoch Version

MBL Version

ROTPK Hash

HUK

Version Counter

MBL Hash

Ellipsis ...

MBL PK

MBL Key Version

Security Policy

Ellipsis ...

MBL Certificate
Signature

MBL Manifest
Signature

SPE SST AssetsNSPE

ROTPK

MBL Certificate

SPE Certificate

NSPE Certificate

Ellipsis ...

MBL

MBL Manifest

SPE Manifest ManifestNSPE Manifest

Hash
Compare

Hash
Compare

FUSE eFlash MBL Certificate

MBL Manifest

Off-chip Flash

4

1

Signature
Authenticate

3

Signature
Authenticate

2

25

Figure 7 illustrates one possible signing schema with the Mutable Boot Loader as an
example. In this design:

 • � The Mutable Boot Loader (MBL) hash is calculated in step 1, then the MBL hash is
compared with the hash embedded in its manifest.

 • �The manifest is signed by the MBL private key offline and it can be validated in step
2, by the corresponding MBL Public Key contained in the MBL certificate provisioned
on the device.

 • �The MBL certificate is upgradable and needs to be further validated by the ROTPK
from the key pair used to sign the MBL certificate. This validation is done in step 3.

 • �The ROTPK is not stored in the OTP to reduce the cost. In step 4, the hash of
the ROTPK is calculated and compared with the value stored in OTP for tamper
detection.

In addition, the green blocks in Figure 7 show blocks that contain versioning information
for further version control during validation. The firmware anti-rollback and Secure Storage
legacy data invalidation can be easily implemented by adding proper version comparation.

3.2.3 Secure Boot - Where To Start

At the time of writing, there is no off-the-shelf open source secure boot solution that is
fully PSA TBFU-compliant. For more details on designing TBFU from the very beginning,
please refer to MCUboot [6] which is currently maintained by JUUL Labs.

MCUboot has been integrated into the TF-M for secure boot authentication. In the TF-M,
SHA-256 and RSA-2048 are used to validate the signed image containing both the SPE and
NSPE code. The swapping operation of the firmware upgrade is configurable by using the
MCUBOOT_NO_SWAP compile time switch.

To launch the TF-M code with MCUboot, AN521 and AN519 are currently supported
platforms on the Fixed Virtual Platform (FVP) and MPS3 or MPS2 FPGA prototyping
boards. AN521 and AN519 respectively are used for Cortex-M33 and Cortex-M23
simulation.

For Armv7-M based dual-core systems, launching TF-M code with MCUboot is also
supported with vendor ported versions of the library.

© Arm Ltd. 2019

https://www.mcuboot.com/

26

3.3 Firmware architecture
3.3.1 PSA-FF isolation level

One core security aspect in the PSA is isolation on different levels, including hardware,
software, and different trust levels. Isolation and segmentation of the critical software
modules help to ensure that a compromise of one model is not directly exploitable on
other models.

Increased isolation improves the security and robustness of the system by reducing its
vulnerability to software defects. However, this increased isolation comes at the expense
of additional hardware, memory, performance or energy. To support implementations that
provide different security, performance and cost trade-offs, the PSA Security Model (SM)
specifies three levels of isolation:

•	 SPE isolation (Level 1).

•	 PSA Root of Trust isolation (Level 2).

•	 Maximum firmware isolation (Level 3).

Figure 8 illustrates the high-level architecture of a PSA Firmware Framework. In this figure,
Secure Partition represents the minimal isolation unit, from a PSA isolation perspective.

© Arm Ltd. 2019

Figure 8:
Advanced isolation

Non-Secure processing
environment (NSPE)

Secure processing environment (SPE)

Application
Firmware

OS libraries

OS kernel

Application

Application
RoT Service

PSA RoT
Service

Application
RoT Service

Application
RoT Service

PSA RoT
Service

Secure IPC Secure Isolation Secure Interrupts

Application Root of Trust

Isolation boundary

PSA Root of Trust

Isolation Level 1

Isolation Level 3 Isolation Level 2

Secure Partition

Secure Partition Manager

Secure PartitionSecure Partition

27

3.3.2 PSA-FF interface

The SPE RoT Services are accessed from other partitions via the PSA Secure IPC framework
that is implemented in the Secure Partition Manager (SPM). The IPC framework is a
connection-based client/server model that provides Remote Procedure Call (RPC) behavior
for calling clients.

As shown in Figure 9, clients can be either in the NSPE or a Secure Partition in the SPE,
and a server implements a RoT Service within a Secure Partition.

To mask underlying hardware differences, APIs are required to provide a consistent
developer experience across different chips and platforms. Arm has created two sets of
APIs that are aimed at different developer communities. Together, these sets of APIs enable
efficient development of software, security functions, and hardware.

 • �PSA Developer APIs are the top-level APIs that are used by application developers
and RTOS vendors. These APIs have been designed to be used by software
developers who wish to use the hardware security features, but who are not
necessarily security experts themselves.

 • �PSA Firmware Framework APIs are designed for developers of secure functions,
also known as Application Root of Trust Service (ARoT). Security experts who wish to
add their own security functionality can develop an ARoT service that can be used on
different chips which use these standard APIs.

© Arm Ltd. 2019

Figure 9: Example
RoT Service
architecture

Applications and
Secure applications

PSA FF interfaces

RoT Service defined
interfaces and
implementation

OS & SPM
Implementation

Non-secure
client

OS Kernel Secure Partition Manager

Secure
client

RoT Service
client library

RoT Service
client libraryRoT Service

Application Secure Partition

Secure Partition

Secure Partition API Client API

RoT Service API

Client API

RoT Service API

IPC protocol IPC protocol

Implementation
defined

28

3.3.3 Smart door lock firmware

A smart door lock generally includes the following security features:

 • ��Authentication methods – including the mechanical key, PIN codes, security token,
and biometrics, such as fingerprint, hand geometry, eye scan or voice ID.

 • Secure communication.

 • Audit log of security events.

 • Trusted boot and secure software update.

 • Secure storage to protect the private data of the end-user.

 • Secure debug feature.

 • Protection from physical tampering and simple SCA.

A typical smart door lock software stack may contain the following functionality modules:

 • ��Normal function – User interface (UI), power management, wireless connectivity, and
sensors, etc.

 • �Security function – Data binding, audit logs, secure storage, secure firmware update,
cylinder motor subsystem, secure debug, etc.

 • �Drivers – LCD, keypad, buzzer, motor, sensors, Bluetooth Low Energy, Cellular, UART,
I2C, SPI, LED, etc.

 • OS – RTOS in the NSPE.

3.3.3.1 Firmware design considerations

In addition to the isolation described in section 3.3.1, another security principle is one of
least privilege, that requires that any software component can access only the necessary
information and resources.

Isolation and SPE minimization

To use the SPE correctly, there are two things to consider:

 • The APIs between the NSPE and the SPE should be minimized and well-structured.

 • The codes in the SPE environment should be robust and minimized.

The more APIs that are exposed to the NSPE from the SPE, the more attack possibilities
are created. The more code that is in the SPE, the more potential bugs and vulnerabilities
are created.

For example, the complete RTOS or huge driver stack must not be placed into the SPE
directly. Instead, weighting, assessing and re-architecting of the SPE code is needed in
order to isolate sensitive activities and assets.

© Arm Ltd. 2019

29

External inputs handling

External unauthenticated input is inherently mistrusted. This type of external input needs
to be handled carefully as it could be used to exploit vulnerabilities. The basic rule is: code
which either contains privileged operations or has access rights to confidential assets
always avoids processing such risky, unauthenticated input. For example, if a process is
responsible for system configuration and the granting of some privileges, then the parse of
external input data will not be done within this process.

The best practice for fulfilling these security principles is to build a system from the
beginning, adding only the required functionality to each Secure Partition. By removing
unnecessary functionality and having less exposure to code, there are fewer security risks
and potential failures.

As a summary, these common rules should be adopted to reduce the potential
attack surfaces:

 • �Implement only necessary features to minimize the system exposure (i.e. minimize
library function for the application) and do not leave in code that is not used.

 • Keep the SPE code as simple as possible.

 • Give the SPE APIs as little exposure as possible to the NSPE clients.

 • Grant least privilege and the accessible resources to each Secure Partition.

3.3.3.2	 Smart door lock assets partitioning

To apply the security principles mentioned in section 3.3.3.1 into a smart door lock design,
and to separate the functionalities into the SPE and the NSPE, in this section we will focus
on the code and data assets that are sensitive and critical to both the device and system
security. Here are a few typical examples of assets on a smart door lock:

1. �Confidential code: A biometric authentication code, such as a fingerprint authentication
algorithm, is a common and core smart door lock feature. The code of the
authentication algorithm is highly sensitive and should be strongly protected against
reverse engineering. This code usually includes converting a fingerprint image into a
mathematical representation which is then followed by verification of the fingerprint
image against the template created during setup.

Note: The robustness of the authentication algorithm itself is beyond the scope of this document.
Multifactor authentication, i.e. PIN code plus fingerprint authentication, can be adopted to
improve the overall security level. However, this level of authentication is a design decision and a
trade-off between usability and security.

© Arm Ltd. 2019

30

2. �Critical process: Controlling the security-related functions such as fingerprint enrollment
and authentication, lock and unlock door commands handling, and cylinder motor
control is critical to guarantee the security of the smart door lock. The unencrypted data
and processing of the data are fully controlled in a secure execution environment that is
implemented via the ARoT services.

3. �Secret data: User credentials or other security-related data such as the enrolled PIN
code and the standard fingerprint template are critical to authentication and need to be
protected against tampering. The fingerprint data or PIN input also requires protection
during transit and processing.

4. �Secure peripheral: The fingerprint scanner and possible pulse and heat sensors for live
finger detection are set as a trusted peripheral to be accessible from the SPE only. If all
the fingerprint processing activities are implemented in the SPE as expected, there is no
need to share this secure peripheral with the NSPE.

5. �Shared peripheral: The PIN code input via the touch panel also acts as a user interface
to display messages from both the NSPE and SPE. In such cases, the PIN code input
should be configured as a shared resource. However, the peripheral switches to the SPE
control mode when the PIN code is inputted to reduce the risk of tampering or spying
by a potential malicious code that is injected into the NSPE by an attacker.

6. �NSPE code: Drivers such as network stack/protocols, Bluetooth, and Bluetooth Low
Energy are usually huge and complex. The size and complexity of the drivers makes
them prone to fatal bugs and exposes them to many attack vectors. Furthermore, these
standard drivers are shared by many OEMs and there is no confidentiality, thus these
drivers should be placed into the NSPE to simplify the SPE and reduce risks.

© Arm Ltd. 2019

31

3.3.3.3	 Smart door lock software architecture

Applying the design considerations mentioned in the previous section, 3.3.3.2, the major
part of the firmware could be architected as in the following figure.

Figure 10 shows that this firmware architecture is designed by leveraging the TF-M
framework. It takes advantage of existing ARoT services, i.e. Storage, Cryptography,
Attestation, and Audit Logs. Several ARoT services for the smart door lock are illustrated
in Figure 10 and are described the next sections, for example, the Session Manager,
Fingerprint Manager and the Cylinder Manager.

© Arm Ltd. 2019

Non-secure processing environment

Applications

Drivers OS Kernel

HAL

Secure Boot

Tr
us

te
d

U
I

St
or

ag
e

At
te

st
at

io
n

Au
di

t L
og

s

Pl
at

fo
rm

3rd
 P

ar
ty

Pr
ov

isi
on

Cr
yp

to
gr

ap
hy

TF-M Core (IPC, SPM, Interrupt Handling)

TBSA-M Hardware (SoC)

PS
A

-R
oT

 S
er

vi
ce

s

Pl
at

fo
rm

 D
riv

er
s

(C
ry

pt
o,

 N
O

N
CE

, R
N

G
, e

tc
)

Application RoT Service
Client Library

Middleware Session
Manager

Fingerprint
Manager

Cylinder
Manager

Secure processing environment

Isolation boundary

TF-M

PSA-RoT (Secure
Priviliged Domain)

PSA Dev.API
& TBSA-M API

IPC or Custom
Interface

Application RoT

PSA-FF API

NSPE

PSA Developer API

TBSA-M HAL API

Client API Client API

PS
A

-R
oT

 S
er

vi
ce

 A
PI

Secure Partition API

Figure 10: Smart door lock
software architecture

32

3.3.4 Fingerprint enrollment flow

The following Figure 11 illustrates the fingerprint enrollment procedure both in terms of
how the NSPE and the SPE communicate and how the ARoT services interact:

© Arm Ltd. 2019

UI Manager

Trusted UI Service

Touch Panel Fingerprint
Scanner

Other Secure
Peripherals

CryptoCell
(Optional)

NVM

Storage Service

Other Functions

Client A
PI

PIN Authentication
Service

Fingerprint
Manager Service

RoT Services Client Library

Secure Partition M
anager

11

9

5

6

8
103

4
7

12

1

2

Notify
Result

Authorization
Check

User Request
Event

Hardware
Boundary

Untrusted
Interactive

Trusted
Interactive

Switch to
NSPE

Switch to
SPE

Notify
SPM

Forward
Request

Store FP

SaveSave
(optional)

Collect FP

Notify User

Trigger
Enroll

Request

Non-secure processing environment Secure processing environment

The following steps correspond to the procedure numbers marked in above Figure 11:

1. �The smart door lock owner raises an enrollment request through the User Interface (UI)
Manager in the NSPE.

2. �The UI Manager redirects the request to the SPE, via the RoT Services Client Library
and through the Client API (PSA-IPC interfaces) to the Secure Partition Manager (SPM).
The RoT Services Client Library may serve multiple function modules inside the dotted
rectangle.

3. �The SPM dispatches this request to the Trusted UI Service in a Secure Partition. The
Trusted UI Service then takes control of the Touch Panel to guarantee that there is no
spy or tamper from the NSPE when the Touch Panel is being used.

Figure 11: Fingerprint
enrollment procedure

33© Arm Ltd. 2019

4.	� Once the Touch Panel is under the SPE control, the user can input the owner PIN code
for the authority check. The check is done by the PIN Authentication Service.

5.	� The PIN Authentication Service forwards the fingerprint enrollment request to another
security partition, the Fingerprint (FP) Manager Service.

6.	� The FP Manager Service controls the fingerprint scanner which is fully under the SPE
control as a trusted peripheral to collect the user’s fingerprint.

7.	 �The FP Manager Service processes the scanned image, converts it into target template
format and sends the data to the Secure Storage Service.

8.	� The template data is stored into the secure storage, for example as an encrypted
data partition on internal or external flash, or other persistent storage. Integrating
CryptoCell-312 could be an enhancement option -as shown in gray dotted path - for
the cryptography key management and acceleration, or even if adopting CryptoCell-
312P to leverage the advanced tamper prevention feature. Adding CryptoCell can
reduce the key exposure at both the NSPE and SPE for many different use cases.

9.	� The FP Manager Service sends the processing result back as a notification to the SPM.

10.	�The SPM first sends the command to the Trusted UI Service, to release the Touch Panel
and gives the control back to the NSPE. The NSPE then displays the generic system
notification, which is considered as non-sensitive in this design example.

11.	�The SPM then sends the notification to the NSPE UI Manager, via the RoT Services
Client Library

12.	�The UI Manager creates a pop-up notification message on the Touch Panel, and the
fingerprint enrollment procedure is complete.

34© Arm Ltd. 2019

3.4 Other PSA specifications

This section gives a brief introduction to the PSA specifications, which are beyond the
scope of this application guide. An understanding of the PSA security rationale is useful for
IoT system architects.

3.4.1 Security Model

The PSA Security Model (SM) defines the overall security architecture for designing and
deploying trusted PSA-compliant devices within ecosystems. It is the top-level document
for all the other PSA specifications and defines common language, high-level robustness
rules, and models for the robustness rules.

3.4.2 Secure Production

There is an informative document, not yet published, that identifies and discusses the
general need for infrastructure and common frameworks to facilitate these factory
processes, as well as their dependencies on the Root of Trust that are established in the
device security architecture.

Deployment of the actual factory provisioning and device management infrastructure
should be done by industry stakeholders themselves or using services such as the Arm
Pelion Device Management (PDM) platform, which allows device manufacturers to
configure millions of devices with both unique cryptography identities and the PDM
connection parameters, before the devices leave the factory.

35

4. Implement - PSA on Armv8-M

4.1 TF-M overview

An important part of the PSA is open-source firmware. There is a reference PSA
firmware implementation, available from Open Governance trustedfirmware.org [7], hosted
by Linaro Community Division, in the form of Trusted Firmware for Cortex-M processors
(TF-M).

TF-M leverages experience from TF-A, the successful open-source project for the Arm
Cortex-A platform. TF-M runs in the SPE and contains the Secure Partition Manager and
RoT Services. TF-M includes the following security foundation features:

 • �Isolated SPE and NSPE execution environments.
 • Trusted device initialization and trusted boot.
 • Secure services invoked from NSPE applications.

TF-M is designed to be highly modular, so that by disabling features, it can be reduced in
size to fit to highly constrained devices, at the same time as still providing basic secure
computing support. The TF-M infrastructure allows any other secure service to be added
easily.

4.1.1 TF-M codebase

TF-M is available and cloneable from https://git.trustedfirmware.org/trusted-firmware-m,
the source tree was structured in the same way as in Figure 12 when this document was
written. All the guidance documents are in the /docs sub folder.

© Arm Ltd. 2019

https://www.trustedfirmware.org/index.html
https://git.trustedfirmware.org/trusted-firmware-m.git

36© Arm Ltd. 2019

Figure 12:
TF-M source tree

As already mentioned, the tfm_user_guide.md and the tfm_integration_guide.md are
the entry points of these documents for compiling and running TF-M on Fixed Virtual
Platform models, or for further integration of the TF-M with other target hardware

platforms or RTOS.

4.1.2 TF-M boot flow

The secure bootloader, MCUboot, starts the system and launches the SPE. The SPE then
initializes the TF-M core and Secure Partitions. The TF-M core is in charge of the SPE and
all the Secure Partitions.

The SPE finally jumps to the NSPE main() to launch the demo application or regression
tests, depending on different build options.

tfm_audit_integration_guide.md

tfm_crypto_integration_guide.md

tfm_platform_integration_guide.md

tfm_sst_integration_guide.md

os_migration_guide_armv8m.md

tfm_build_instruction.md

tfm_integration_guide.md

tfm_ns_client_identification_guide.md

tfm_secure_boot.md

tfm_sw_requirement.md

tfm_user_guide.md

coding_guide.md

MCUBoot

RoT Services integration
guide, Audit Log, Crypto,
Secure Storage, etc.

Hardware platform drivers,
external CMSIS and
MbedTLS codes

SPE code including TF-M
core, Non-secure Callable
(NSC), RoT services

TF-M manifest, Secure Storage
policy and other configuration
management

Guide for source tree environment setup, build & run TF-
M, OS migration (from Armv7-M to v8-M), integrating
with other HW and OS, secure boot, etc.

app

interface

platform

secure_fw

test

tools

bl2

cmake

docs

user_guides

services

37© Arm Ltd. 2019

4.1.3 Available application RoT services

The built-in ARoT services APIs contain the following three modules at the time of writing:

1.	 Crypto Service

The TF-M Crypto Service allows the application to use cryptography primitives such as
symmetric and asymmetric ciphers, hash, Message Authentication Codes (MACs) and
Authenticated Encryption with Associated Data (AEAD). Additionally, there are sets of APIs

for key policy and key management, and random number generation etc.

2.	 Secure Storage Service

The Secure Storage Service is a fundamental feature for asset protection. The TF-M Secure
Storage (SST) Service allows the storage of various types of data which have security
implications. It is meant to store the platform credentials (keys, certificates, and hashes,

etc.) that require strict access controls.

3.	 Audit Logging Service

The TF-M Audit Logging Service allows secure services in the system to log critical system
events and information that have security implications. This is required to analyze the
system behavior, system events and triage system issues offline. This Audit Logging Service
offers a mitigation against the repudiation threat.

Attestation is also an important ARoT service. It covers the generation of a report by a
device or subsystem that can be verified by third-party software. Attestation forms part of
building a trust model for including a device in a secure system.

The Entity Attestation Token (EAT) PSA-RoT Service is currently being developed by
TF-M. The EAT acts as a report card for IoT devices and contains claims that can be
verified cryptographically. The EAT is being adopted by the PSA, GlobalPlatform (GP) and
standardized in the IETF and GP. In the PSA, EAT can be used to bind any application-
specific attestation protocol that is implemented in the corresponding ARoT service.

In addition to these ARoT services, a Provisioning Service and other ARoT services will be
available soon.

38© Arm Ltd. 2019

4.1.4 TF-M integration

To work with the current TF-M, a target OS needs to support the Armv8-M architecture.
Depending upon the system configuration, this might require configuring drivers to use
appropriate address ranges.

Please refer to the tfm_integration_guide.md for more details on how to integrate other
hardware platform or RTOS. For example, the following hardware platforms currently

support TF-M directly:

 • AN521: Soft Macro Model (SMM) Cortex-M33 SSE-200 subsystem for MPS2+.

 • AN519: Cortex-M23 IoT Kit subsystem for MPS2+.

 • Musca-A1 (Cortex-M33 SSE-200 subsystem) and Musca-B1 test chip board.

4.2 Add an Application RoT service

This section describes how to add an Application RoT service into the SPE. For example, the
Cylinder Manager Service for locking and unlocking the smart door lock cylinder. The lock
or unlock commands come via different channels, for example, fingerprint detection, PIN
password, or smartphone commands.

4.2.1 Secure Partition manifest

Each RoT service belongs to one Secure Partition, which is the minimal unit that the SPE
manages from a security perspective. To assemble and allocate resources within the SPE,
each Secure Partition must have resource requirements declared in a manifest file.

A manifest file defines the values and identifiers that are used by the Secure Partition
source code, as well as the access control between Secure Partitions. Access control
between Secure Partitions is done by listing the dependencies to other RoT services (and
referenced by the Service ID). A manifest file may contain Secure Partition ID, entry point
symbol, minimum stack and heap size, reserved IRQ lines, etc. Please refer to the TF-M
document and source code for a full value list.

Manifest files are analyzed at the compile time by the SPE build tools to validate
dependencies and produce header files that satisfy the required isolation level.

4.2.2 ARoT folder structure

All application RoT services are located inside the /secure_fw/services folder. As a result,
a new folder (i.e. cylinder_manager) and its manifest should be created accordingly for this
Cylinder Manager Service. There is a manifest YAML file and python script that facilitate the
addition or modification of header files. Please refer to the user guide documents and the
existing ARoT services for more detail.

39© Arm Ltd. 2019

4.2.3 Smart door lock unlock operation with TF-M APIs

Figure 13 shows an example procedure for processing the unlock command issued from
the owner of the smart door lock via their smartphone app.

The requirements are that the person’s smartphone has already been paired with the smart
door lock and that the smartphone app has been provisioned securely by the cloud server
to have a pre-shared key for payload encryption during communication. The Bluetooth
Low Energy driver is placed in the NSPE to simplify the SPE code and reduce the attack
surfaces. The communication data processing which involves cryptography operations and
the cylinder operation are done in the SPE for security reasons.

As illustrated in Figure 13, the NSPE code mainly acts as a router to unpack and repack the
communication data. The NSPE code connects the app on the smartphone to the SPE. The
NSPE code also controls some UI-related operations to update the smart door lock status
and notify the owner or guest. There are three steps involved in unlocking the door:

 1. �Set up a secure session between the smartphone app and the smart door lock. The
blue arrows in the diagram represent the tasks for this step.

 2. �Using the secure session, the smartphone app issues an unlock command to unlock
the door. The smart door lock unlocks the cylinder and reports the status back to the
smartphone app. The yellow arrows in the diagram represent the tasks for this step.

 3. �Close the secure session. The orange arrows in the diagram represent the tasks for
this step.

40© Arm Ltd. 2019

Generate session
key request

Status notification

Status notification

Terminate
construction
session

Receive encrypted
session key

[AES-256 session
key]pre-sharedKey

[unlock command
key]sessionKey

psa_connect() to
Session Service

psa_connect() to
Cylinder Manager

psa_connect() to
Session Manager

psa_call() forward
unlock command

Handle status and
notify App when
psa_call() ends

Notify App when
psa_call() ends

psa_close()
to close the
connection

psa_close()

psa_close()

psa_call() forward
request to SPE

psa_call() forward
request

Forward output
to App when
psa_call() ends psa_audit_add_record()

A
pplication RoT Service Client Library

Secure Partition M
anager

 �Establish communication
session using a pre-shared key.

 �Session Manager Service first
authenticates the App account
info, then generates and exports
a session key in order to use the
Crypto Service.

 �Receive encrypted session key.

 �Encryption of ‘unlock’
command, by session key
received in previous step.

 �Cylinder Manager Service
decrypts and authenticates
command, then unlocks cylinder
and finally logs this unlock event
to Audit Log Service.

 �Get operation result and update
NPSE with status.

 �Close the communication
session and notify smart door
lock to destroy the session key.

 �Notify user on the App in case
any fatal error happens. Platform Drivers

(Crypto, Nonce, RNG, etc.)

Crypto Service

Session Manager
Service

Storage Service Audit Log Service

Cylinder Manager
Service

2

3

psa_destroy_key() psa_aead_decrypt()

Sequence Flow Note Smartphone App Non-secure Processing
Environment

Secure Processing Environment

1

psa_generate_key()
psa_export_key()

psa_sst_read()

Please be aware that the sequence flow of the ARoT Service APIs usage in Figure 13
is conceptual and, for simplification, does not cover all the details of cryptography keys
usage and management.

4.4 TF-M evaluation

Either the Musca development boards, or the Corstone FVP simulation platforms, or the
pb, are available for building and running the TF-M sample code. The Musca development
board is targeted for use as a secure foundation platform for software development and
to prototype TF-M code. You can register and apply to request your loaner board from the
Arm Developer website.

Figure 13:
Smart door lock
unlock operation
with TF-M APIs

https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board

41

5. Implement - PSA on Armv7-M

5.1 TF-M Support for Armv7-M

TF-M is also supported for Armv7-M architectures where dual core systems and can
provide an isolation mechanism between Secure and Non-secure worlds. TF-M for
Armv7-M is supported by the Cypress PSoC64 line of Secure MCUs and this can be used
as the platform to implement the smart door lock defined in this paper.

TF-M runs in the SPE (Cortex M0+) and includes the following security foundation features:

 • �Isolated SPE and NSPE execution environments.
 • Secure Boot and Trusted device initialization
 • Secure services invoked from the NSPE applications

5.1.1 TF-M Armv7-M codebase

The code base used for PSoC64 PSA targets are cloneable from https://git.
trustedfirmware.org/trusted-firmware-m.git under the branch ‘feature-twincpu’. The
source tree will be identical to the one shown in Figure 12.

5.1.2 TF-M boot flow

TF-M for PSoC64 includes the Cypress Secure Bootloader, which is a PSoC64 optimized
port of the MCUboot, launches the SPE environment in the Secure Core (M0+). The
SPE then initializes Secure Partitions. The M0+ core is in charge of the SPE and all the
Secure Partitions.

The SPE finally launches the Application core (M4) and jumps to the NSPE main() to launch
the demo application or regression tests, depending on different build options.

Each one of these boot images are checked both for validity and authenticity by checking
signatures using public keys. This check is done in a sequential manner i.e., one stage
verifies and launches the next stage to get secure chain images.

5.1.3 Available application RoT services

The built-in ARoT services APIs contain the following three modules at the time of writing:

1.	 Crypto Service

The RoT Crypto service provides Arm Mbed, PSA-compliant, APIs which allow the
application to use cryptography primitives such as symmetric and asymmetric ciphers,
hashes, Message Authentication Codes (MACs) and Authenticated Encryption with
Associated Data (AEAD). Additionally, there are sets of APIs for key policy and key
management, random number generation etc.

© Arm Ltd. 2019

https://git.trustedfirmware.org/trusted-firmware-m.git
https://git.trustedfirmware.org/trusted-firmware-m.git

42

2.	 Secure Storage Service
The Secure Storage Service is a fundamental feature for asset protection. The TF-M has
internal Trusted storage which allows the storage of various types of data which have
security implications. It is meant to store the platform credentials (keys, certificates, and
hashes, etc.) that require strict access controls.

3. Audit Logging Service
The TF-M Audit Logging Service allows secure services in the system to log critical system
events and information that have security implications. This is required to analyze the
system behavior, system events and triage system issues offline. This Audit Logging Service
offers a mitigation against the repudiation threat.

© Arm Ltd. 2019

43

5.1.4 Other PSoC64 RoT services

The PSoC64 has also has built-in, PSA-compliant services which immutably reside in
protection context than Application RoT SPE calls. These services provide Crypto and
secure storage services, similar to the description in 5.1.3 and also provide the below
additional services.

© Arm Ltd. 2019

Device HUK Attestation
Service

Attestation

Non-Secure
Application request

Storage

3rd party

Cryptography

Audit logs

Platform

Crypto
Services

Provisioning
Services

ROTPK
Public key

Device
X.509

Other
Public Keys

Security
Policies

PSoC64 Root-of-Trust Service

Generated during
manufacturing

If requiring device
ROT services

Sorted during
manufacturing

Invoked during manufacturing

TF-M Root-of-Trust Service Non-secure Application

PS
A

co
m

pl
ai

nt
 c

al
ls

PS
A

A
PI

 c
al

ls

1. Attestation

Attestation is an important ARoT service. It covers the generation of a report by a device or
subsystem that can be verified by third-party software. Attestation forms part of building a
trust model for including a device in a secure system.

Attestation is performed using the immutable Root of Trust service provided by the
PSoC64. The Attestation RoT service can be used to check the validity of any arbitrary
memory region in the chip by hashing the region, adding a random number to avoid replay,
and signing it with the unique device private key, ensuring authenticity of the return. The
service requestor will be able to compare this against the expected value to ensure that the
chip has not been compromised.

2. Provisioning

The PSoC64 line of Secure MCU’s provides several provisioning services outside of the
TF-M scope which can be used to securely inject user credentials and transfer the Root of
Trust during product manufacturing. This is beyond the scope of this application note, but
on a high level the series of steps are;

 1) �Securely transfer the ROTPK into the PSoC64 device using cryptographically
signed tokens.

 2) �Securely transfer user assets like public keys, certificates and security policies to the
device and protect them.

44

5.2 Add an application RoT service

This section describes how to add an Application RoT service into the SPE. For example, the
Cylinder Manager Service for locking and unlocking the smart door lock cylinder. The lock
or unlock commands come via different channels, for example, fingerprint detection, PIN
password, or smartphone commands.

5.2.1 Secure Partition manifest

Each RoT service belongs to one Secure Partition, which is the minimal unit that the SPE
manages from a security perspective. To assemble and allocate resources within the SPE,
each Secure Partition must have resource requirements declared in a manifest file.

A manifest file defines the values and identifiers that are used by the Secure Partition
source code, as well as the access control between Secure Partitions. Access control
between Secure Partitions is done by listing the dependencies to other RoT services and
referenced by the Service ID. A manifest file may contain Secure Partition ID, Entry point
symbol, Minimum stack and heap size, Reserved IRQ lines, etc. Please refer to the TF-M
Secure Partition Manager (SPM) documentation for a full value list.

Manifest files are analyzed, at the compile time, by the SPE build tools to validate
dependencies and produce header files that satisfy the required isolation level.

5.2.3 Smart door lock - provisioning services

The addition of the provisioning service adds the ability to form a unique, trusted device
identity which can be used as a trust anchor. Provisioning also ties into the trustworthiness
of attestation as the verification of it is done by a unique, generated device key in the part.

Using provisioning services, the smart door lock designer will be able to uniquely form
an Instance Unique hardware key (HUK) for every device in the secure manufacturing
environment. This is a one-time operation and can never be re-used as the information
exists in OTP non-volatile storage.

As a part of this step, the device also generates a unique device root key and exports
the associated public key. This device root public key can be attested by the trusted
manufacturing by forming a unique X.509 certificate to be placed into the device, as well
as sent to the smart door lock designer.

After deployment, if the server chooses to make an attestation call service on a device,
the device will send a signed digest using the device root private key. The validity of
the returned packet can be verified using the unique device public key in X.509
ertificate; protecting against the use case where malicious firmware tried to spoof an
attestation return.

© Arm Ltd. 2019

45

5.2.2 Smart door lock unlock operation with TF-M APIs

The actual PSA API calls to achieve the functionality is identical to Section 4.2.3, Figure 13.

5.3 TF-M evaluation

Evaluation of the Armv7-M PSA architecture and sample code can be done on the
CY8CPROTO-064-SB prototyping kit in conjunction with Mbed OS release.

© Arm Ltd. 2019

46

6. PSA Certification
PSA Certified™ is an independent security testing program devised by several companies.
It enables IoT chipsets and devices to be tested in laboratory conditions to evaluate their
level of security and help developers and customers trust that they can achieve the level
of security they need. Working with leading test labs, PSA certified provides multi-level
assurance for a device, depending on the security requirements established through
analysis of threats for a specific use case.

There are two types of certification, functional certification and a multi-level
security certification.

Functional API certification checks the implementation of PSA Developer APIs. The APIs
provide top-level security functions of the PSA Root of Trust (PSA-RoT) which reduce
fragmentation and development time costs.

The multi-level security certification scheme uses independent test labs to review the
security requirements of the generic parts of IoT platforms and SoCs. There are three
progressive levels of security certification, with increasing depth of evaluation. The tests
result in a digital certificate with a unique PSA reference number, indicating which level of
testing has been awarded, creating industry trust and confidence in devices.

The PSoC64 line of Secure MCU’s is both PSA Certified Level 1 and PSA Functional API
Certification, with PSA Certified Level 2 making good progress. PSA Certified Level 1
sets up the foundation by certifying hardware mechanisms for isolation and PSA Certified
Level 2 expands the scope to the PSA-RoT and threat resistance with software and
hardware attacks.

© Arm Ltd. 2019

http://www.psacertified.org

47

7. Conclusion
PSA is a robust system architecture covering both hardware and firmware, codifying these
common security principles into a set of system requirements and interfaces. PSA itself is
architecture-agnostic and it is expected that Cortex-A and other architecture platform will
be covered and supported officially in the future.

Explore more details of PSA:
	 pages.arm.com/PSA-Building-a-secure-IoT.html

The PSA specifications were publicly released in October 2018. To support the PSA, Arm
offers IP with embedded security features, for example, Armv8-M processors including
Cortex-M23, Cortex-M33 and Cortex-M35P, CrytpoCell and CryptoIsland. Arm also offers
TF-M as an open-source software for a PSA-compliant implementation. Both the Musca
development board and the FVP simulation platform are available free of charge, and upon
request, as an execution platform. For anyone who wants to quickly access and study the
PSA specifications, then download, compile and launch the TF-M on a loaner Musca board,
we have the following information:

Explore more details on TF-M and Musca boards:
	 git.trustedfirmware.org/trusted-firmware-m.git/about/
	 www.arm.com/products/development-tools/development-boards/musca-a1-iot

Explore more details of TF-M and PSoC64 SB board:
	 www.cypress.com/CY8CPROTO-064S1-SB

As a PSA use case on security aspects of the smart door lock design and implementation,
this application guide covers all the three parts of the PSA:

Analyze - Threat Models and Security Analyses

Explore more details of the Asset Tracker, Smart Meter and Network Camera TMSA, by
downloading the following resources:

	 Asset Tracker TMSA

	 Water Meter TMSA

	 Network Camera TMSA

© Arm Ltd. 2019

https://pages.arm.com/PSA-Building-a-secure-IoT.html
https://git.trustedfirmware.org/trusted-firmware-m.git/about/
https://www.arm.com/products/development-tools/development-boards/musca-a1-iot
https://www.cypress.com/CY8CPROTO-064S1-SB
http://pages.arm.com/tmsa-resources-collective-asset-tracker.html
http://pages.arm.com/tmsa-resources-collective-water-meter.html
http://pages.arm.com/tmsa-resources-collective-network-camera.html

48

Architect - firmware architecture and hardware specifications

Explore more details of the security model, TBSA-M, TBFU and PSA-FF specifications,
by entering your details to download the following resources:

	 Security Model

	 TBSA-M

	 TBFU

	 Firmware Framework

Implement – Arm hardware IP and open-source TF-M
Explore more details on Trusted Firmware-M:

	 www.trustedfirmware.org/about/

Taking some hardware and software design considerations of a typical smart door lock into
account, the application guide describes:

	 How to do threat modelling and security analysis for a target device. The
	 advantage of the Armv8-M architecture and some available Arm IP that supports
	 PSA TBSA-M compliance

Explore more details of the Arm security IP from the Arm website:

	 www.arm.com/products/silicon-ip-security

	 The key points of TBFU, Trusted Boot flowchart and typical firmware image
	 signature manifest

	 PSA Firmware Framework and security considerations when isolating the SPE
	 from the NSPE

	 The flowchart of fingerprint enrollment process, and the PSA secure IPC and RoT
	 Services APIs usage for unlock operation

This application guide addresses the security of a smart door lock by leveraging the PSA.
The PSA provides hardware-backed, scalable security that can be applied across a variety
of devices, which will allow the right level of security to be designed for all kinds of IoT
devices. Similar security analysis and design approaches could be applied to many other IoT
devices such as smart meters, smart speakers, and others.

© Arm Ltd. 2019

http://pages.arm.com/tmsa-resources-collective-asset-tracker.html
http://pages.arm.com/psa-resources-sm.html
http://pages.arm.com/psa-resources-tbsa-m.html
http://pages.arm.com/psa-resources-tbfu.html
http://pages.arm.com/psa-resources-ff.html
https://www.trustedfirmware.org/about/
https://www.arm.com/products/silicon-ip-security

49

8. References
[1] PSA TMSA examples

[2] Smart lock wiki

[3] Texas Instruments, Application Report, Smart Door Lock With SimpleLink™
Platform, 2018

[4] Smart Locks: Lessons for Securing Commodity Internet of Things Devices, Grant Ho,
Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, David Wagner,
University of California, Berkeley, 2016

[5] NIST SP 800-108

[6] MCUboot home page

[7] Trustedfirmware.org home page

© Arm Ltd. 2019

https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://en.wikipedia.org/wiki/Smart_lock
http://www.ti.com/lit/an/swra604/swra604.pdf
http://www.ti.com/lit/an/swra604/swra604.pdf
https://people.eecs.berkeley.edu/~pratyushmishra/docs/papers/asiaccs16-smartlock.pdf
https://people.eecs.berkeley.edu/~pratyushmishra/docs/papers/asiaccs16-smartlock.pdf
https://people.eecs.berkeley.edu/~pratyushmishra/docs/papers/asiaccs16-smartlock.pdf
https://csrc.nist.gov/publications/detail/sp/800-108/final
https://www.mcuboot.com/
https://www.trustedfirmware.org/index.html

50

9. Appendix - Threat Summary Table

© Arm Ltd. 2019

A
sset

 Threats
(STRIDE) Attack Scenario Impact of

Vulnerability

Mitigation/
Security
Requirement

Arm’s Technology

Firm
w

are

Tampering

Rogue code
injection

Execute
malicious code

Support secure boot
flows and firmware
authentication

[CI] Root of Trust
[CI] Loaded SW validation
[PSA] Trusted Boot features

[PSA] Secure debug (SDC-600)
Debug port abuse or
physical tampering
local storage

Physically install
malware

Prevent voltage/current
glitches and debug
protection

Strong magnetic
ring attack (simple
side-channel attack)

Interfere the circuit and
try to reset the smart
door lock into default
state (might be unlock)

Maintain secure state

Anti-tampering
protection at SoC level

CryptoIsland-300P, Cortex-M35P,
CryptoCell-312P

Information
disclosure

Extract local memory
or intercepting
firmware OTA
package

Reverse engineering to
explore firmware
vulnerability

Execute-only RAM

Firmware encryption

Memory Protection Unit

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations
trusted functions

Denial of
service

Rogue code injection
or firmware flaw
exploiting

Permanent bricking of
device

Stack protection

Disaster detection and
recovery

Arm Pointer Authentication

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic
operations trusted functions

Elevation of
privilege

Abuse firmware
update mechanism

Firmware version
rollback to older buggy
version

Support secure firmware
update and anti-rollback

[CI] SW update validation
[CI] Rollback protection
[PSA] Firmware update features

Firm
w

are certificate

Spoofing Steal private key of
asymmetric key pair

Impersonate system
admin to generate fake
certificate

Organizational policy for
key management Pelion Device Management service

Tampering
Digital port abuse or
physical tampering
local storage

Replace certificates to
install malware

Secure storage accessing
to SPE only (hardware
enforced isolation)

[PSA] Use HW based isolation (i.e.
Trustzone and Trustzone filters) to
enforce access controls

[CI] Data protection functionalities, in
particular support for asset use policy
[CI] Persistent trusted storage
[PSA] Secure storage trusted
functions

Information
disclosure

Exploiting weak
cryptography

Steal secrets

Use state-of-the-art
cryptographic algorithms
and key sizes

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations
trusted functions

Advanced side-
channel analysis

Anti-tampering
protection at SoC level

CryptoIsland-300P, Cortex-M35P,
CryptoCell-312P

Denial of
service

Remotely tampering
local storage

Permanent bricking of
device

Enforce access control
and least privilege

Disaster detection and
recovery

[PSA] Isolation and SPE to manage
credentials
[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations
trusted functions

51© Arm Ltd. 2019

D
evice ID

Spoofing Modify or clone
Device Unique ID

Impersonate another
legit device

Secure provisioning
and OTP

Do not expose Device
ID, use alias identity keys
or anonymous device on-
boarding and attestation

Use state-of-the-art
cryptographic algorithms
and key sizes

Pelion Device Management service

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations trust-
ed functions

Tampering
Debug port abuse or
physical tampering
local storage

Tamper unique
Device ID

Information
disclosure

Exploiting weak
cryptography

Extract secrets and
clone device

Credentials including biom
etric data

Spoofing Replace credential Impersonate device
owner or admin

Enforce access control of
credentials and principle
of least privilege

[CI] Data protection functionalities, in
particular support for asset use policy
[PSA] Isolation and SPE to manage
credentials

Information
disclosure

Exploiting weak
cryptography

Steal credentials

Use state-of-the-art
cryptographic algorithms
and key sizes

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations
trusted functions

Advanced Side
Channel Analysis

Anti-tampering
protection at SoC level

CryptoIsland-300P, Cortex-M35P,
CryptoCell-312P

Elevation of
privilege Debug port abuse

Device usurpation

Modify firmware and
install malware
(cf. Firmware asset)

Hardware enforced
secure storage accessing
to SPE only
Secure storage in SPE

Debug protection

[CI] Persistent trusted storage
functionality
[PSA] Secure storage trusted
functions

[PSA] Secure debug (SDC-600)

Configuration

Spoofing Device
impersonation

Illegal access to
configured network

Secure storage accessing
to SPE only (hardware
enforced isolation)

Use TLS, IPSec or HTTPS
protocol for
communication

[PSA] Use HW based isolation (i.e.
Trustzone and Trustzone filters) to
enforce access controls

[CI] Data protection functionalities, in
particular support for asset use policy
[CI] Persistent trusted storage
[PSA] Secure storage trusted
functions

[PSA] Cryptographic operations and
RNG trusted functions

MbedTLS

Information
disclosure

Extract confidential
configuration

Illegal access to
confidential information

Denial of
service

Tampering local
storage or
configuration
command over
network

Device unavailability,
i.e. disconnect from
network

Elevation of
privilege

Tampering local
storage or
configuration
command over
network

Device abnormal
behavior

52© Arm Ltd. 2019

Table 3:
Smart door lock threats summary table

Event logs

Tampering

Tampering event logs
stored locally or in
transit

Add fake security event
to the logs

Enforce access control of
logs and principle of least
privilege

Event log protection by
encryption and
authentication

Use TLS, IPSec or HTTPS
protocol for
communication

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations and
RNG trusted functions

[CI] Data protection functionalities, in
particular support for asset use policy
[PSA] Audit logs trusted functions

MbedTLS
Repudiation

Suppress critical alerts
and events

Erase security events
logs

Tampering system
time Wrong events timeline Secure timestamp [PSA] Secure system time

Information
disclosure

Illegally access by
exploiting firmware
flaws

Unauthorized access to
event logs Secure storage in SPE

[CI] Data protection functionalities, in
particular support for asset use policy
[PSA] Audit logs trusted functions

U
ser data

Tampering Tampering local
storage Modify local user data

Secure storage accessing
to SPE only (hardware
enforced isolation)

[PSA] Use HW based isolation
(i.e. Trustzone and Trustzone filters)
to enforce access controls

[CI] Data protection functionalities, in
particular support for asset use policy
[CI] Persistent trusted storage
[PSA] Secure storage trusted
functions

Information
disclosure

Extract user privacy
data

Illegal access to user
privacy data

N
etw

ork connectivity

Tampering
Intercept and tamper
network
communication data

Modify assets in transit

Data encryption and use
TLS, IPSec or HTTPS
protocol for
communication

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations and
RNG trusted functions
[PSA] SPE to manage server
authentication and communication
encryption
[PSA] Cryptographic operations and
RNG trusted functions

MbedTLS

Information
disclosure

Intercept and extract
network data

Illegal access to
confidential information
in transit, i.e. via
Man-In-The-Middle

D
evice resources

Information
disclosure

Simple side-channel
analysis

Eavesdropping buses
and extract sensitive
information

Local data and
communication
encryption

[CI] Secure cryptography and RNG
support
[PSA] Cryptographic operations and
RNG trusted functions

Elevation of
privilege

Rogue code injection
or firmware flaw
exploiting

Abuse resources,
biometric sensor,
cylinder, etc., i.e. cause
the device to catch fire –
thermal control or drain
battery

Execution environment
isolation

Enforce access control to
critical resources

[PSA] Use HW based isolation (i.e.
Trustzone and Trustzone filters) to
enforce access controls

[CI] Isolated secure enclave and
secure subsystem

[PSA] SPE to manage sensitive
operations

53© Arm Ltd. 2019

Non-Confidential Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced
in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information for the purposes of determining whether implementations infringe any third-party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT.

For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED
OF THE POSSIBILITY
OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not
exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended
to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.
W
If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement
covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of the Agreement
shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the
US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2018-2019 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

https://www.arm.com/company/policies/trademarks

